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A comprehensive uncertainty analysis, with advanced techniques and full list and full value ranges of all individual parameters,
was used to examine a simple mass balance model and address questions of error partition and uncertainty reduction in critical

acid load estimates that were not fully answered by previous studies.

Abstract

Simple mass balance equations (SMBE) of critical acid loads (CAL) in forest soil were developed to assess potential risks of air pollutants to
ecosystems. However, to apply SMBE reliably at large scales, SMBE must be tested for adequacy and uncertainty. Our goal was to provide
a detailed analysis of uncertainty in SMBE so that sound strategies for scaling up CAL estimates to the national scale could be developed. Spe-
cifically, we wanted to quantify CAL uncertainty under natural variability in 17 model parameters, and determine their relative contributions in
predicting CAL. Results indicated that uncertainty in CAL came primarily from components of base cation weathering (BCw; 49%) and acid
neutralizing capacity (46%), whereas the most critical parameters were BCw base rate (62%), soil depth (20%), and soil temperature (11%).
Thus, improvements in estimates of these factors are crucial to reducing uncertainty and successfully scaling up SMBE for national assessments
of CAL.
Published by Elsevier Ltd.
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1. Introduction

Development of effective policies for environmental pro-
tection requires timely and reliable information that can be
used to assess the risks of pollutants on ecosystems at large
spatial scales. The concept of a critical acid load (CAL here-
after) for forest soil is appealing because it provides simple,
quantitative information about thresholds of pollutants over
which unacceptable long-term harmful effects on ecosystem
structure and function could occur (Nilsson and Grennfelt,
1988; Hodson and Langan, 1999; Gregor et al., 2004). The
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model of simple mass balance equations (SMBE) for CAL
was developed and used in Europe for this purpose (de Vries,
1991; Sverdrup and De Vries, 1994; Werner and Spranger,
1996; Gregor et al., 2004). SMBE is simple in its model struc-
ture and data requirements and, thus, suitable for large-scale
applications to identify potential areas of CAL exceedance.
Other process-based models, like PROFILE (Sverdrup and
De Vries, 1994; Hodson and Langan, 1999; Barkman and
Alveteg, 2001; Hall et al., 2001) and MAGIC (Cosby et al.,
2001; Gregor et al., 2004), may be more accurate at local scales
and, therefore, more suitable for applications at particular sites
where management decisions must be made, but pose great dif-
ficulty in scaling up beyond the watershed because they require
intensive site-specific data that are often not available at large
scales. However, to apply SMBE reliably and effectively for
national assessments of CAL, the model must be tested for
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its adequacy by quantifying uncertainty in its predictions (Zak
et al., 1997; Hodson and Langan, 1999; Barkman and Alveteg,
2001; Hall et al., 2001; Skeffington, 2006). Adequate uncer-
tainty analysis is especially important for large scale modeling
because it is not possible to validate spatial model predictions
at large scales (Clark et al., 2001; Li and Wu, 2006).

Uncertainty analysis (UA) is the process for assessing uncer-
tainty in modeling to: (1) identify major uncertainty sources; (2)
quantify their degree and relative importance; (3) examine their
effects on model predictions under different scenarios; and (4)
determine prediction accuracy (O’Neill and Gardner, 1979;
Petersen, 2000; Katz, 2002; Li and Wu, 2006). The importance
of quantifying and reducing uncertainty in CAL estimates was
recognized (Sverdrup and De Vries, 1994; Zak et al., 1997;
Hodson and Langan, 1999; Barkman and Alveteg, 2001; Hall
et al., 2001; Skeffington et al., 2006), and the previous work
on uncertainty analysis of CAL estimates was examined in
a comprehensive review by Skeffington (2006). However,
even though many studies have provided insights into different
aspects of uncertainty and ways of reducing uncertainty in CAL
(Hodson and Langan, 1999; Barkman and Alveteg, 2001; Hall
et al., 2001; Skeffington et al., 2006), systematic analysis of un-
certainty in SMBE is still lacking. First, previous studies often
focused on the mechanistic PROFILE model which is based
on soil mineralogy (Hodson and Langan, 1999; Barkman and
Alveteg, 2001). Therefore, uncertainty results from those stud-
ies could not be applied directly to SMBE. Second, previous
studies primarily conducted sensitivity analysis (SA) in which
model parameters were set at fixed percentages instead of using
probability sampling techniques to define the parameter space
(e.g., Jonsson et al., 1995; Zak et al., 1997; Barkman and
Alveteg, 2001). Sensitivity analysis should not be used alone
to address many of the uncertainty issues (e.g., defining the
probability distribution for critical loads, quantifying error par-
tition among factors) because SA and UA examine the same
problem using different techniques that reveal different aspects
of uncertainty (Li and Wu, 2006; see Section 2 for detailed dis-
cussion). Third, the simulations in previous studies were limited
either by narrow data ranges because they were from a few sites
or by incomplete analysis because they concentrated on param-
eter groups or selected parameters (Zak et al., 1997; Barkman
and Alveteg, 2001). Without considering all individual factors,
researchers could not fully assess the complexity of sensitivity
and uncertainty in SMBE predictions of CAL. Fourth, the uncer-
tainty measures used in some previous studies may be problem-
atic. For example, use of the rank correlation coefficient lacked
statistical power to quantify degree of importance by model pa-
rameters (e.g., Skeffington et al., 2006). Even though the general
principles and techniques used by previous studies were well
established, the methodology can and should be improved to
provide better quantification and interpretation of uncertainty
in CAL estimates as predicted by SBME.

The goal of this study was to improve our understanding of
the behaviors of SMBE in terms of how natural variability in
input data and model parameters impacts predictions of CAL.
We decided not to perform uncertainty analysis of exceedance
of CAL because exceedance is calculated as a simple linear
function of CAL (Werner and Spranger, 1996; Gregor et al.,
2004) and, as such, quantitative information about uncertainty
of exceedance could be derived analytically from that of CAL
(Li and Wu, 2006). We built upon previous studies (Hodson
and Langan, 1999; Barkman and Alveteg, 2001; Hall et al.,
2001; Skeffington et al., 2006), to conduct a more comprehen-
sive assessment of uncertainty with three methodology im-
provements by: (1) examining all aspects of the SMBE
behavior by treating the model as a mathematical construct;
(2) considering all individual factors involved, the full ranges
of their values, and their effects on both CAL and its key com-
ponents; and (3) applying advanced techniques of uncertainty
analysis so that the uncertainty of SMBE could be quantified
and partitioned properly. This assessment should provide bet-
ter and more detailed information that could be used to de-
velop sound strategies for scaling up SMBE predictions of
CAL with acceptable uncertainty to the national scale. Specif-
ically, the objectives of this paper were to quantify the level of
uncertainty in CAL predictions by SMBE, to determine the
relative contributions of all individual factors to the total un-
certainty in CAL, and to explore ways of reducing uncertainty
for national assessments of CAL.

2. Methods

2.1. The SBME model and its factors

The SMBE model was developed in Europe for assessing potential risks of

forest ecosystems to air pollutants (de Vries, 1991; Sverdrup and De Vries,

1994; Werner and Spranger, 1996; Gregor et al., 2004). The model assumed

a simplified steady state with a single soil layer, was based on chemical criteria

of biogeochemical processes, and had seven components that represented sour-

ces and sinks of soil acidity (Sverdrup and De Vries, 1994; Werner and

Spranger, 1996; Watmough et al., 2004; Gregor et al., 2004). The SMBE

model used in this study was expressed as

CALðSþNÞ ¼ BCdep �CLdep þBCw �BCu þNi þNu �ANCle;crit ð1Þ

where CAL(S þ N) is the critical loads for atmospheric deposition (wet and

dry) of sulfur and nitrogen, BCdep is base cation deposition, CLdep is chloride

deposition, BCw is base cation weathering, BCu is base cation uptake, Ni is

nitrogen (N hereafter) immobilization, Nu is N uptake, and ANCle,crit is critical

leaching of acid neutralizing capacity (Werner and Spranger, 1996; Watmough

et al., 2004; Gregor et al., 2004). The unit of all the terms in Eq. (1) was

eq ha�1 yr�1, and the base cation (BC hereafter) was the sum of Ca, Mg,

and K. Note that sulfur was not considered by SMBE because sulfur was as-

sumed to be in equilibrium in soil solution (Gregor et al., 2004). Also, the orig-

inal model had an eighth component, N denitrification (Nde), which was

ignored in this study because N denitrification occurs within a relatively small

proportion of the total land area (Watmough et al., 2004). Among the remain-

ing seven components of CAL in Eq. (1), BCw, BCu, Nu, and ANCle,crit were

referred to as key components of CAL and calculated by submodels with 14

important parameters, while BCdep and CLdep were defined by the input data

from available GIS databases (McNulty et al., 2007) and Ni was defined by

its range (Gregor et al., 2004; Table 1).

The submodels to calculate the four key components were defined as fol-

lows (de Vries, 1991; Sverdrup and De Vries, 1994; Werner and Spranger,

1996; Gregor et al., 2004). BCw was based on the soil type-texture approxima-

tion method and expressed as

BCw ¼ RBCw ,ðWRC � 0:5Þ,Z,exp

�
A

281
� A

273þ T

�
ð2Þ

where RBCw
is BC weathering rate per unit depth of soil, WRc is weathering

rate class, Z is soil depth, T is average annual air temperature, and A is the
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Table 1

The data (means, standard deviations, ranges) of the factors used in uncertainty analysis of SMBE

Factor Symbol Mean SD [Range] Unit Distribution

BC weathering BCw

Soil deptha Z 1.23 0.38 m Normal

Temperaturea T 11.90 5.19 �C Normal

BCw base rateb RBCw 750.0 [225,2250] eq ha�1 yr�1 m�1 Triangular

Uptake of BC and Nc BCu, Nu

Growth rate Kgr 9.03 3.68 m3 ha�1 yr�1 Normal

Stem wood density rst 551.67 89.42 kg m�3 Normal

Branch to stem ratio fbr;st 0.18 0.07 kg kg�1 Normal

BC content in stem ctBCst 0.13 0.03 eq kg�1 Normal

BC content in branch ctBCbr 0.26 0.05 eq kg�1 Normal

N content in stem ctNst 0.11 0.03 eq kg�1 Normal

N content in branch ctNbr 0.35 0.08 eq kg�1 Normal

Acid neutralizing capacity ANCle,crit

Runoffa Q 391.27 507.04 m3 ha�1 yr�1 Normal

Gibbsite constantd KGibb 500.00 300.00 m6 eq�2 Log-Normal

BC:Al ratioe RBC:Al 5.5 [1,10] mol mol�1 Triangular

BCw percentf Ple 77.50 [65,90] % Uniform

Input CL component

N immobilizationg Ni 42.85 [14.3,71.4] eq ha�1 yr�1 Triangular

BC depositionh BCdep 136.97 87.07 eq ha�1 yr�1 Log-Normal

Chloride depositionh CLdep 52.96 68.08 eq ha�1 yr�1 Log-Normal

There were 14 parameters for calculation of the four key components and three input components of critical loads. The values and distributions of the parameters

were primarily based on literature (de Vries et al., 1993; Sverdrup and De Vries, 1994; Werner and Spranger, 1996; Barkman and Alveteg, 2001; Hall et al., 2001;

Gregor et al., 2004; Skeffington et al., 2006) with some statistics from GIS databases (McNulty et al., 2007). SD stands for standard deviation, BC for base cation,

and N for nitrogen.
a From spatial databases of environmental variables (Daly et al., 1994; Miller and White, 1998; McNulty et al., 2007).
b From the relation of RBCw

ðWRC � 0:5Þ by assuming that BCw class range from 1e5 with the average class of 2 (Werner and Spranger, 1996; Gregor et al.,

2004).
c From information about species-specific data of five coniferous and seven deciduous trees (de Vries, 1991; Werner and Spranger, 1996; Gregor et al., 2004).
d From the ranges given in Gregor et al. (2004); (Werner and Spranger, 1996).
e from the commonly-used values of 1.0 for Europe (Sverdrup and De Vries, 1994; Hall et al., 2001) and 10.0 for Canada (Watmough et al., 2004; Ouimet et al.,

2006).
f From the ranges given in Gregor et al. (2004; Page V23) as functions of soil types (ranging from 70% for poor sandy soils to 85% for rich soils).
g From values given in Gregor et al. (2004, page V13).
h From spatial databases of wet deposition (Grimm and Lynch, 2004; McNulty et al., 2007).
Arrhenius constant (de Vries et al., 1993; Werner and Spranger, 1996; Gregor

et al., 2004). Z and T were defined by GIS databases (McNulty et al., 2007;

Table 1). A was based on the Arrhenius relation and set at 3600 K (Sverdrup

and De Vries, 1994; Werner and Spranger, 1996; Gregor et al., 2004).

The key component of BCw defined in Eq. (2) was a function of both RBCw

and WRc, i.e., RBCw
ðwRC � 0:5Þ, with correction factors for soil depth and for

using air temperature as a measure of soil temperature. RBCw
was treated in

Gregor et al. (2004) as a constant (500 eq ha�1 yr�1 m�1), even though

RBCw
was the parameter related directly to BCw. Thus, BCw defined by Eq.

(2) was controlled primarily by WRc as a function of soil texture and parent

material with classes of 1e6 (de Vries et al., 1993; Sverdrup and De Vries,

1994; Werner and Spranger, 1996; Gregor et al., 2004; Table 1). The BCw

model in Eq. (2) allowed for easy parameterization and scaling of site level

data to regional or national scales. However, preliminary analyses suggested

that WRc was one of the most critical factors in SMBE predictions of CAL.

As a result, the uncertainty analysis of SMBE should be enhanced when the

base rate of BCw was represented by a numerical variable (RBCw
) instead of

a categorical variable (WRc). Therefore, Eq. (2) was reformulated as

BCw ¼ RBCw ,Z,exp

�
A

281
� A

273þ T

�
ð3Þ

In the modified model (Hodson and Langan, 1999), RBCw
represented the BCw

base rate per depth of soil, but changed as a variable based on conditions of

soil texture and parent material (Gregor et al., 2004). RBCw
was assumed to

range from 225 to 2250 (eq ha�1 yr�1 m�1) based on the given range of
WRc from 1 to 5 (assuming class 6 to be rare; Gregor et al., 2004; Table 1).

Note that the results of RBCw
could be translated back to WRc if needed for

direct comparison.

The two uptake components (BCu, Nu) shared the same formula, which

was expressed as

Yu ¼ Kgr � rst,
�
ctYst þ fbr;st,ctYbr

�
ð4Þ

where Yu is either BCu for BC uptake or Nu for N uptake, Kgr is average annual

growth rate, rst is density of stem wood, fbr;st is branch-to-stems ratio, ctYst is

content in stems for BC or N, and ctYbr is content in branches for BC or N

(Gregor et al., 2004). These seven uptake-related parameters in Eq. (4) were

functions of tree species (de Vries, 1991; Werner and Spranger, 1996; Gregor

et al., 2004; Table 1). BCu and Nu represented long-term average removal of

these elements from ecosystems and would be subject to harvesting methods

used (Werner and Spranger, 1996; Gregor et al., 2004).

ANCle,crit was based on the critical aluminum concentration method and

expressed as

ANCle;crit ¼�Q2=3,

�
1:5

BCdep þPle,BCw �BCu

KGibb,RBC:Al

�1=3

� 1:5
BCdep þPle,BCw �BCu

RBC:Al

ð5Þ

where Q is annual runoff, Ple is percent of BCw involved in leaching, RBC:Al is

ratio of BC to aluminum, and KGibb is the Gibbsite constant (Werner and
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Spranger, 1996; Gregor et al., 2004). Q and BCdep were defined by GIS data-

bases (McNulty et al., 2007; Table 1), while BCw and BCu were calculated

by Eqs. (3) and (4). RBC:Al and Ple were functions of soil type, and KGibb

was a function of soil type and organic material (Werner and Spranger,

1996; Gregor et al., 2004). It should be pointed out that Ple was not in the orig-

inal model of ANCle,crit, but was discussed in Gregor et al. (2004) and

Sverdrup and de Vries (1994) as a factor to determine different BCw values

that may be considered in calculating ANCle,crit based on soil types. It was in-

cluded here in Eq. (5) because of its importance to ANCle,crit as suggested by

preliminary simulation results. In addition, on the right side of Eq. (5), the first

term represented hydrogen ion concentration, [Hþ], and the second term rep-

resented inorganic aluminum concentration, [Al3þ] (Sverdrup and De Vries,

1994; Gregor et al., 2004; Skeffington, 2006).

2.2. The data used in simulations

The statistical values of all factors (i.e., 3 components and 14 parameters)

used in the uncertainty analysis of SMBE are given in Table 1. Some values

were averages and standard deviations (SD) obtained from spatial databases

(e.g., those for soil depth, temperature, runoff, BC deposition, and chloride de-

position) (Miller and White, 1998; Grimm and Lynch, 2004; McNulty et al.,

2007). Many other factors were known only for their ranges of variability,

such as BCw base rate, BC:Al ratio, BCw percent, and N immobilization

(Werner and Spranger, 1996; Gregor et al., 2004). In addition, some parame-

ters were based on the relationships developed for SMBE (e.g., the Gibbsite

constant and the uptake-related parameters; de Vries et al., 1993; Sverdrup

and De Vries, 1994; Werner and Spranger, 1996; Gregor et al., 2004). In

this study, we assumed that: (1) the environmental variables and the uptake

variables with known mean and SD should have normal distributions; (2)

the deposition variables and the Gibbsite constant have lognormal distribu-

tions; (3) the interval variables only with known ranges have triangular distri-

butions (whose expected values were the mid values of the ranges when

unknown); and (4) the categorical variables (e.g., BCw percent) have uniform

distributions (Table 1). Similar assumptions about data distributions have been

cited in other studies (Hodson and Langan, 1999; Barkman and Alveteg, 2001;

Hall et al., 2001; Skeffington et al., 2006).

2.3. Approaches to uncertainty quantification

The most common approach to quantitative assessment of uncertainty in

model predictions is to run the model under perturbations (i.e., changing

values of parameters and input data) with the help of Monte Carlo simulations

(MCS) (Gardner and O’Neil, 1983; Gardner et al., 1990; Rastetter et al., 1992;

Heuvelink, 1998; Jansen, 1998; Katz, 2002; Li and Wu, 2006; Skeffington,

2006). The specific questions about uncertainty in CAL estimation with

SBME were: Which was the most critical factor to the prediction and uncer-

tainty of CAL? What was the relative contribution by each factor to the model

uncertainty? What were the general patterns of SBME behaviors that may be

used to develop strategies of improving model accuracy and reducing predic-

tion uncertainty in the scaling up process? To address these questions, different

simulation strategies were needed.

2.3.1. Sensitivity analysis

To determine the most critical factors to SMBE predictions of forest soil

CAL, we used the technique of single-parameter sensitivity analysis (SA) to

rank parameters based on the rates of change in model output caused by

changes in the values of a particular parameter (Klepper, 1997; Katz, 2002;

Li and Wu, 2006; Skeffington, 2006). The SA procedure was: (1) to set all pa-

rameters to their average (or most likely) values, (2) to change one parameter

at a time by a given percentage (e.g., a reduction or increase by 10%, 20%,

30%), (3) to run SMBE to estimate CAL for each parameter set (which was

labeled as simulation MCSSA), and (4) to assess the sensitivity of CAL esti-

mates to the parameters by a measure of relative error of each simulation (Salt-

elli et al., 2000; Melching and Bauwens, 2001; Katz, 2002; Li and Wu, 2006).

The measure of relative error was defined for a given factor by

REy% ¼
�
Vy% �V100%

��
V100% ð6Þ
where REy% is the index of relative error in predicted variable V (i.e., percent

change in model output caused by a fixed percent change in a model input),

V100% is the value of the predicted variable obtained from the simulation in

which all factors were set at average values (i.e., 100%; Table 1), and Vy%

is the value of the predicted variable obtained from the simulation in which

the target factor was changed to a certain ( y) percentage of its average value

while all the other factors were kept at the average values. The predicted vari-

able V could be either CAL or one of the key components. Thus, RE was used

to quantify the sensitivity ranking of CAL to a factor. The higher the RE value,

the more sensitive the CAL estimate was to the factor. SA was used to describe

the effects of model parameters on the estimates of CAL.

2.3.2. Uncertainty analysis

To determine the relative contributions of all parameters to uncertainty of

the SMBE predictions of forest soil CAL, we used the uncertainty analysis

(UA) technique to partition variability in CAL estimates among the considered

parameters (Jansen, 1998; Katz, 2002; Li and Wu, 2006). The UA procedure

was: (1) to use the Latin hypercube sampling (see below) to select a number of

values for each parameter based on its assumed probability distribution, (2) to

define the parameter space by a full factorial of all sample values of the param-

eters, (3) to run SMBE with all of the parameter sets in the parameter space to

calculate the total variability of the model output (which was labeled as sim-

ulation MCSALL), (4) to run SMBE again, with only the parameter sets in

which a target parameter X was fixed at its average value while all other

parameters were allowed to change at full ranges of their values, to calculate

the marginal variance of the target parameter X (which was labeled as simula-

tion MCSALL�X), and (5) to quantify the error contribution of the parameter

based on the proportion of its marginal variance in the total variability of

the model output (Eq. 7; Katz, 2002; Li and Wu, 2006). The error contribution

of any given parameter (X ) was calculated by

EX ¼
�
s2

ALL � s2
ALL�X

�
s2

ALL

ð7Þ

where EX is the index of error contribution by factor X, s2
ALL is the overall var-

iance of the model output obtained from the all-factor simulation MCSALL, and

s2
ALL�X is the top-marginal variance of the model output obtained from the all-

but-one-factor simulation MCSALL�X . Because s2
ALL�Xreflects the variability re-

duced by the absence of the target factor, EX can be used to define the upper

limits of potential error reduction and determine the error partition of CAL

among the selected parameters. UA was used to quantify the effects of model

parameters on the variability of CAL.

2.3.3. Sampling
The Latin hypercube sampling was used to obtain a representative sample

of parameter values and to reduce the computational burden (McKay et al.,

1979; Li and Wu, 2006). The sampling was done with the statistics and the

assumed distributions of all the parameters involved (Table 1). In the Latin hy-

percube sampling, the range of a parameter was stratified into k equal proba-

bility segments based on the assumed theoretical probability distribution

(Table 1), and each stratum was randomly sampled once. The choice of k sam-

ple values for each parameter was made to balance the computational limita-

tion and the need to have a sample size large enough to represent a full range

of the parameter values, given the complexity of the model involved. In the

current study, three sample values for each factor were used after preliminary

results showed that they produced patterns similar to simulations with ten sam-

ple values. This small sample was primarily dictated by the computational lim-

itation because the parameter space as defined by the full factorial of the three

values from all 17 factors already formed a huge domain (see below).

2.3.4. Simulation strategies
Four analyses were performed to provide a full assessment of uncertainty

in modeling CAL with SMBE. Each analysis ran the simulations of MCSSA,

MCSALL, and MCSALL�X with a different group of parameters.

1. The first analysis was used to quantify uncertainty in CAL by the seven

components as targeted factors (Eq. 1). All of the 17 parameters (Table 1)

were used in the simulations, but only the variability of the components
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was considered in calculating the uncertainty measures of REy% and EX

(Eqs. 6 and 7).

2. The second analysis was used to assess relative importance of all individ-

ual parameters to CAL in SMBE. The targeted factors included the 14

parameters and the three input components involved in Equations 1, 3,

4, and 5 (Table 1).

3. The third analysis was used to examine uncertainty in the intermediate

outputs of SMBE (i.e., the four modeled components of BCw, BCu, Nu,

and ANCle,crit). For each key component, all parameters involved (Eqs.

3, 4, or 5) were used to assess sensitivity and uncertainty in CAL and

the component of interest predicted by SMBE.

4. The fourth analysis was used to highlight effects of using extreme values of

BC:Al ratio (Eq. 5) on outputs of uncertainty analysis, keeping everything

else the same as those in the second analysis. Instead of the probabilistic

samples, the minimum (1.0, a common value used for Europe; Sverdrup

and De Vries, 1994; Hall et al., 2001), the maximum (10.0, a common value

used for Canada; Watmough et al., 2004; Ouimet et al., 2006), and the av-

erage of BC:Al ratio were used in simulations (Table 1). BC:Al ratio was

selected for this particular analysis because it was the only factor that

showed significant impact with the extreme values in preliminary analysis,

and is the only environmental factor in SMBE that defines potential damage

to ecosystems (Hodson and Langan, 1999).

For MCSSA of each analysis, SMBE was run with seven parameter sets for

each factor (i.e., a reduction or increase by 0%, 10%, 20%, and 30% of its av-

erage value). For MCSALL and MCSALL�X of each analysis, the numbers of sim-

ulations were 3N and 3N�1 (or 3N�k if the targeted factor was a modeled key

component with itself having k parameters), depending on the number (N ) of

parameters examined. For example, the total number of parameter sets used in

MCSALL to examine effects of all 17 factors on CAL (i.e., in the first and the

second analyses) was 129,140,163 (i.e., 317). The large number of simulations

was achieved by embedding the UA routines (including sampling algorithms)

inside SMBE. The summation of the EX values (Eq. 7) by all parameters may

exceed 100% because of the complexity (e.g., nonlinearity) in the submodels

of SMBE. Thus, the calculated EX values were standardized to highlight the

relative importance of each factor involved (i.e., the reported EX values

were forced to sum to 100%).

3. Results

3.1. Sensitivity and uncertainty of CAL: key components

The results from the first simulation analysis under a full
range of the parameter space are displayed in Tables 2 and
3, and Figs. 1 and 2. The average of forest soil CAL was es-
timated at 1887 eq ha�1 yr�1 with a median of 1765 and
a SD of 770. The 5% and 95% quantiles were 864 and
3607 eq ha�1 yr�1 (Table 2). In addition, the results were sum-
marized to present the frequency distribution of CAL (Fig. 1)
and the cumulative distribution functions of CAL and the three
key components (Fig. 2). The seven components used in
SMBE differentially impacted the predicted CAL (Table 3).
Among the components, CAL was the most sensitive to
BCw followed by Nu and BCu. For example, a 20% change
in BCw caused a 17% change in CAL estimates (i.e., RE20%

in Table 3). In contrast, BCw and ANCle,crit were the most in-
fluential to uncertainty of CAL, contributing 49% and 46% of
variability to the total error in CAL estimates, respectively
(Table 3).

3.2. Sensitivity and uncertainty of CAL: all parameters

The results from the second simulation analysis are dis-
played in Fig. 3 to examine effects on CAL by all 17 of the
individual factors in SMBE (Table 1). CAL sensitivity was
influenced the most by BCw base rate, soil depth, temperature,
BC content in stems, and N content in stems (Fig. 3A). With
a 20% increase of these factors, CAL estimates showed
a 22% increase by BCw base rate and soil depth, 12% by tem-
perature, and 8% by N content in stems, but a 13% decrease by
BC content in stems. Variation in all other factors had little im-
pact on CAL, except for growth rate, wood density, and BCw

percent, each of which varied CAL by just under 5%. CAL un-
certainty came primarily from three factors: BCw base rate
(62%), soil depth (20%), and temperature (11%) (Fig. 3B).
No other factors contributed more than 3% of the error to for-
est soil CAL.

3.3. Sensitivity and uncertainty of key components:
individual parameters

The results of effects of individual parameters on the corre-
sponding key components (Eqs. 3e5) are summarized in Table 4,
and Figs. 4 and 5. For sensitivity, the most influential param-
eters were BCw base rate and soil depth to BCw, and growth
rate and stem wood density to BCu (Table 4, Fig. 4A and B).
Note that Nu had almost identical sensitivity values to those
of BCu. The most critical parameters controlling ANCle,crit

were growth rate, stem wood density, BCw base rate, soil
depth, BCw percent, and BC content in stems (Table 4,
Fig. 4C). The critical parameters to BCw and BCu displayed
straight proportional effects on these corresponding compo-
nents (Fig. 4A and 4B). However, the parameters critical to
Table 2

The statistical values (i.e., mean, SD, range, median) of the seven components from the first simulation analysis

Component Mean SD Minimum Maximum Median

BC weathering 1571.92 755.95 665.58 3140.05 1492.63

BC uptake 837.21 335.54 360.74 1615.29 810.50

N uptake 828.74 270.56 347.78 1622.00 813.30

Acid neutralizing capacity �192.52 168.54 �1045.57 �0.28 �163.36

N immobilization 43.52 10.71

BC deposition 130.83 65.07

Chloride deposition 43.06 34.90

Output: critical loads 1887.25 770.39 187.74 4656.87 1765.33

The values for critical loads, BCw, BCu, Nu and ANCle,crit were obtained from simulations MCSALL, while those for Ni, BCdep, and CLdep were from input data

(Table 1). The 5% and 95% quantiles of critical loads were also measured at 864.06 and 3606.7. All variables were in the unit of eq ha�1 yr�1.
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ANCle,crit showed compounded effects of the parameters with
a 20% increase of the critical parameters leading to changes
of 82e98% in ANCle,crit values (Table 4, Fig. 4C). In addi-
tion, the BC:Al ratio and Gibbsite constant exerted different
effects on ANCle,crit (Fig. 5). For uncertainty, the results
identified critical parameters with the most error contribu-
tions to the key components (Table 4). For predictions of
BCw, all three parameters were important, with BCw base
rate contributing 74% and soil depth 19%. For BCu, the pa-
rameters that contributed the most were growth rate (75%),
followed by stem wood density (11%) and BC content in
stems (11%). Patterns similar to BCu were observed for Nu
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with slight differences in the percentages. For predictions
of ANCle,crit, the most critical parameters were BCw base
rate (57%), soil depth (18%), temperature (10%), and growth
rate (9%), respectively.

3.4. Changes in sensitivity and uncertainty of CAL:
extreme values of BC:Al ratio

The results from the fourth simulation analysis are high-
lighted for eight selected factors in Table 5. BC:Al ratio was
the factor of interest, while the other seven parameters were
selected because they had highest uncertainty rankings as ob-
served in Fig. 3. The main contributors to uncertainty of CAL
and ANCle,crit were in similar orders and with the top three
ranked parameters being: BCw base rate (48% and 45%),
BC:Al ratio (29% and 28%), and soil depth (14% and 13%).

4. Discussion

4.1. Effects of key components on critical loads

Uncertainty of CAL as predicted by SMBE under a full
range of the probabilistic parameter space was at a medium
level, with SD of 770 eq ha�1 yr�1 and CV of 40% (Table 2).
The standard deviation of CAL varies when parameter vari-
ability changes and when parameters are added to or removed
from the SD calculation. For example, SD of CAL increased
greatly to 3345 eq ha�1 yr�1 (CV at 150%) when extreme pa-
rameter values (i.e., minimum, average, and maximum) were
used in a preliminary simulation analysis. In particular, the
use of the extreme values of BC:Al ratio alone increased the
CV of CAL from 40% to 50% (MCSALLof the second analysis
vs. MCSALL of the fourth analysis). For removal of single pa-
rameters (e.g., MCSALL�X of the second simulation analysis),
CV of CAL could get as low as 28% when BCw base rate
was kept at its average value. The statistical values of CAL ob-
tained in this study were similar to those from the previous
studies cited in Skeffington (2006), but the means and medians
showed relatively higher values (e.g., Table 2). Nevertheless,
accurate predictions of CAL were not the concern of this
study; our primary focus was on the uncertainty of CAL and

Table 3

Relative importance of the seven components to uncertainty in critical loads

based on the first simulation analysis

Component RE20% (%) EX (%)

BC weathering 16.66 49.40

BC uptake �8.87 2.00

N uptake 8.78 2.00

Acid neutralizing capacity 2.04 46.17

N immobilization 0.67 0.01

BC deposition 2.85 0.34

Chloride deposition �0.83 0.07

The values of the relative error (RE20%; Eq. 6) were obtained from simulations

MCSSA, representing relative change in critical load estimates when a given

target component was increased by 20%. The values of the error contribution

(EX; Eq. 7) were obtained from simulations MCSALL and MCSALL�X , defining

how the error in the critical loads estimates was partitioned among the

components.
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the figure had insignificant effects on uncertainty of critical loads, but a few (i.e., wood density, BC in branch, N in branch) had RE20% values similar to those

of growth rate and BCw percent at below 5%.
its most critical contributors that were revealed by treating
SMBE as a mathematical construct in a systematic uncertainty
analysis. Given the degrees of variability among the factors
used in SMBE (Table 1), the SD of CAL observed with the
full probabilistic parameter space suggests that uncertainty
from SMBE and its parameters may be moderate in the scaling
up of CAL.

The results indicated that much of the uncertainty in CAL
as predicted by SMBE came from BCw and ANCle,crit with
each respectively contributing 49% and 46% to the total vari-
ability in CAL estimates (Table 3). Even though they have
been identified as the most critical components before
(Hodson and Langan, 1999; Hall et al., 2001; Skeffington,
2006), the results from our study quantitatively demonstrate
the dominance of BCw and ANCle,crit in SMBE estimates of
CAL. Our results further indicate that, despite their similar
contributions to the uncertainty of CAL, BCw may be more
important because the most critical factors to ANCle,crit were
also the three parameters of BCw (Table 4). However, one
must be cautious and not overestimate the potential of error re-
duction that may be achieved through improved estimates of
BCw. How much of the 49% of CAL variability accounted
for by BCw may be removed is unknown because natural
variability in BCw and its parameters as major sources of un-
certainty cannot be eliminated (Li and Wu, 2006). Neverthe-
less, the best way to reduce uncertainty in CAL estimates
should be to improve the accuracy of BCw estimates.

The five other components showed insignificant contribu-
tions to variability of CAL estimates (Table 3). For BCu and
Nu, the reason may be that they offset each other in the estima-
tion of CAL because BCu acted as a source of soil acidity
while Nu functioned as a sink (Sverdrup and De Vries,
1994; Gregor et al., 2004). This relationship is reasonable
given that these uptake components tend to vary together as
timber harvesting removes both BCu and Nu from the system.
However, if BCu and Nu were removed in disproportion to in-
put levels, then harvesting could significantly impact nutrient
balance. For Ni, BCdep, and CLdep, the reason may be that
these input components to CAL were observations and there-
fore had less uncertainty. Nevertheless, these components of
CAL should not be discounted entirely because they directly
affect CAL estimation.

The results from simulations under the full range of the
probabilistic parameter space also suggested that CAL follow
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a log-normal distribution (Fig. 1). The log-normal distribution
may be characteristic for CAL because SMBE outputs from
both simulations reported here and preliminary analyses indi-
cated that the average and SD of CAL may change as different
subsets of parameters were used, but the distribution remained
the same. The distribution of CAL may have resulted primar-
ily from the log-normal distribution of BCw, because of the
various statistical distributions observed (Fig. 2) for the four
key components and assumed for the individual parameters
(Table 1). The frequency distribution of CAL obtained here
from the probabilistic samples of parameters should have
a stronger statistical basis than those obtained from the non-
probabilistic samples. Therefore, the confidence interval (CI)
calculated based on a normal distribution should not be used
to define the uncertainty level of CAL (e.g., Barkman et al.,
1995; Barkman and Alveteg, 2001) because for asymmetric
probability distributions such as log-normal, CI is also asym-
metric (Meeker and Escobar, 1998). For example, the 5% and
95% quantiles for CAL were 864 and 3606 eq ha�1 yr�1

(Table 2). However, if normality were assumed for CAL,
then the calculated 5% and 95% quantiles would be 619 and
3154 eq ha�1 yr�1. Thus, it is imperative that, before paramet-
ric analyses like CI can be used, the distribution of a model
output should be determined to avoid false projections.

Table 4

Relative importance of model parameters to the uncertainty in four key

components of critical loads

Component Factor RE20% (%) EX (%)

BC weathering BCw base rate 20.00 74.41

Soil depth 20.00 18.79

Temperature 11.03 6.80

BC uptake Growth rate 20.00 74.77

BC content in stem 14.53 11.31

Stem wood density 20.00 11.23

Branch to stem ratio 5.47 2.40

BC content in branch 5.47 0.29

N uptake Growth rate 20.00 71.25

Stem wood density 20.00 12.33

N content in stem 12.53 9.73

Branch to stem ratio 7.47 5.72

N content in branch 7.47 0.98

Acid neutralizing capacity BCw base rate 91.84 56.78

Soil depth 91.84 17.89

Temperature 51.48 9.73

Growth rate �98.29 9.07

BC:Al ratio �12.45 1.65

BC content in stem �82.21 1.64

Stem wood density �98.29 1.59

BC deposition 15.26 0.45

Branch to stem ratio �27.06 0.44

Runoff 4.61 0.30

Gibbsite constant �2.28 0.22

BC content in branch �27.06 0.16

BCw percent 91.84 0.089

The data were from the third simulation analysis. The uncertainty measures,

RE20% and EX, were the same as those described in Table 3. The factors

were arranged based on their uncertainty rankings.
4.2. Effects of individual parameters on critical loads

The variability and uncertainty in forest soil CAL estimates
were controlled primarily by five parameters in SMBE (i.e.,
BCw base rate, temperature, soil depth, BC content in stems,
and N content in stems; Fig. 3). Among them, BCw base
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For ANCle,crit, three parameters were also important but not displayed because

soil depth and BCw percent had the identical sensitivity curves with BCw base

rate, while density of stem wood had the same sensitivity with growth rate. All

of the other seven parameters were insignificant (e.g., having relative errors

less than 28% when they were changed by 20%; see Table 4).
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rate, soil depth, and temperature (i.e., the three parameters of
BCw) caused the most change and contributed the highest un-
certainty (i.e., 93% combined) in CAL estimates (Fig. 3). The
significance of these results lies in the in-depth and systematic
analyses of our approach because all 17 factors in SMBE were
considered individually and together for their effects on CAL.
Barkman and Alveteg (2001) speculated that analysis with all
input parameters should greatly improve quantification of un-
certainty. Such information on error partition among the pa-
rameters, as well as among the components, provides the
direct indication of how uncertainty in CAL may be reduced
in any large scale assessment of CAL with SMBE.

4.3. Effects of parameters on key components

The four modeled components of SMBE (i.e., BCw,
ANCle,crit, BCu, Nu) were treated as the intermediate model out-
puts and examined separately for their own uncertainty in the
submodels (Table 4). The results from a closer analysis on the
key components can provide additional insights into the behav-
iors of SMBE.

For BCw, all three parameters were important. Sensitivity of
BCw was high to BCw base rate and soil depth, each of which
led to proportional change in BCw (Figs. 3 and 4A, Table 4).
Uncertainty in BCw was dominated by BCw base rate (74%),
but soil depth and temperature also made considerable contri-
butions (Fig. 3, Table 4). Barkman and Alveteg (2001) found
that soil physical properties were the most important predic-
tors of BCw. Our results support their finding because BCw

base rate is closely related to soil type and physical properties.
However, unlike the PROFILE model examined by Barkman
and Alveteg (2001), no difference in SMBE predictions were
found between CAL and BCw in terms of the ranking of im-
portance of identified parameters.

For BCu and Nu, the most influential parameters were
growth rate, stem wood density, and BC or N contents in stems
(Fig. 4B, Table 4). Growth rate and stem wood density caused
proportional changes in the two uptake components because
these parameters were used in multiplicity in the uptake sub-
model (Eq. 4). Growth rate was the primary parameter of un-
certainty in BCu and Nu with EX values over 71%, but stem
wood density and BC or N content in stems also showed
some contributions in predicting BCu and Nu (Table 4). These
results indicate that there were significant differences between
CAL and the uptake components in terms of the ranking of the
parameters because BC and N contents in stems were more
important parameters to CAL than growth rate and stem
wood density (Fig. 3). It is not clear why this disparity has oc-
curred, and further analysis is required.

For ANCle,crit, many parameters were critical, including
BCw base rate, soil depth, growth rate, temperature, stem
wood density, BCw percent, and BC content in stems
(Fig. 4C, Table 4). The most important parameters to sensitivity
of ANCle,crit were BCw base rate, soil depth, growth rate, stem
wood density, and BCw percent. A 20% increase in each
of these parameters led to over a 90% increase in ANCle,crit

(Table 4). This relationship may exist because BCw base rate,
soil depth, and BCw percent control BCw (Eqs. 3 and 5), while
growth rate and stem wood density dominate BCu (Eq. 4). The
most significant parameters to uncertainty of CAL were BCw

base rate (57%), soil depth (18%), temperature (10%), and
growth rate (9%), respectively (Table 4). ANCle,crit was also
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examined to determine the effects of the two key parameters
that define the chemical criterion of CAL: BC:Al ratio and
Gibbsite constant. The results showed that BC:Al ratio exerted
considerable influence on ANCle,crit and its aluminum compo-
nent, [Al3þ], whereas Gibbsite constant had little effects on
ANCle,crit and its hydrogen ion component, [Hþ] (Fig. 5).
Most effects of BC:Al ratio on ANCle,crit occurred at the lower
end of its range.

4.4. Implications of observed behaviors of SMBE in
calculating CAL

The results discussed above should have important implica-
tions to scaling up CAL with SMBE. Uncertainty in CAL esti-
mates may be reduced by focusing on the most critical factors in
the model. On the component level, BCw and ANCle,crit should
be the main focuses for potential reduction in CAL uncertainty.
Future research should be directed toward efforts of quantifying
BCw given that the most critical parameters to ANCle,crit were
also the three parameters of BCw. The different methods of cal-
culating BCw described by Hodson and Langan (1999), Hall
et al. (2001) and Gregor et al. (2004) should provide the starting
points for such efforts. On the individual parameter level, sig-
nificant improvement of CAL estimates should come from
the three most influential parameters of BCw base rate, soil
depth, and temperature because they seem to exert the largest
influence on the variability of CAL (Fig. 3). In addition, BCw

base rate must be represented by BCw class as a function of
soil properties in the scaling up process (Eq. 2) because it is dif-
ficult to define BCw base rate directly in large scale assessment
of CAL. Thus, the relationship between BCw class and soil
properties must be examined for uncertainty. Scaling up
SMBE for national assessments of CAL should be greatly im-
proved if variability and uncertainty in BCw class, soil depth,
and air temperature could be reduced in the spatial databases.

However, caution should be exercised because it is conceiv-
able that the observed patterns of uncertainty may change under
different circumstances (e.g., changes in the parameter space).

Table 5

Effects of using extreme values of BC:Al ratio (i.e., the fourth simulation anal-

ysis) on estimation of CAL and ANCle,crit

Target parameter EX (%)

CAL

extreme BC:Al

ANC

extreme BC:Al

CAL

probabilistic BC:Al

BCw base rate 47.93 44.91 62.22

BC:Al ratio 28.56 28.35 1.65

Soil depth 13.70 12.58 19.89

Temperature 6.81 6.20 10.89

BC content in stem 1.68 1.40 2.12

Growth rate 0.86 6.27 0.32

N content in stem 0.46 1.08

BCw percent 0.29 0.29 0.10

The uncertainty measure, EX, was the same as those described in Table 3. The

significant change was that BC:Al ratio became the second critical factor in the

uncertainty ranking for both CAL and ANCle,crit, as compared to its ignorable

rankings from simulations with probabilistic samples shown in Fig. 3 (in-

cluded here in the third column) and Table 4.
Our preliminary analyses suggested that patterns of uncertainty
values were relatively constant. We performed similar simula-
tions analyses with extreme values of the parameters (i.e., use
of minimum, average, and maximum values). This change of
the parameter space was equivalent to increasing the CVof a pa-
rameter. For example, CV for BC:Al ratio and Ni respectively
changed from 30% and 25% under the probabilistic sampling
approach to 82% and 66% under the extreme value approach.
We found that none of the parameters showed significant
changes in their uncertainty rankings, except for BC:Al ratio.
Using extreme values only for BC:Al ratio, we observed that
BC:Al ratio became the second most important parameter to un-
certainty of CAL and ANCle,crit (Table 5). Given that BC:Al ra-
tio is the only environmental factor in SMBE that defines
potential damages to ecosystems (Hodson and Langan, 1999)
and that its ‘‘extreme’’ values are commonly used in Europe
(1.0; Sverdrup and De Vries, 1994; Hall et al., 2001) and Canada
(10.0; Watmough et al., 2004; Ouimet et al., 2006), BC:Al ratio
should be treated as one of the most important parameters in
SMBE calculations of CAL, especially when its values are
low (Fig. 5). In addition, it is highly unlikely that a single value
of BC:Al ratio could be sufficient for a large region in the scaling
up of SMBE (Hall et al., 2001). Future research should establish
relationships of BC:Al ratio to other ecosystem properties that
can be easily defined at large scales and, thus, incorporated
into scaling.

The results of this study demonstrate that the totality of
a model must be emphasized and examined whenever possi-
ble because SMBE shows complex behaviors that could
make results from partial analyses misleading. For example,
BC:Al ratio changed significantly in its uncertainty ranking,
but remained inconsequential in its sensitivity ranking,
when extreme values were used (Table 5). BC:Al ratio and
Gibbsite constant were both key biogeochemical parameters
to ANCle,crit. However, BC:Al ratio could be a major factor
to the uncertainty of ANCle,crit, whereas Gibbsite constant
showed little effects on ANCle,crit (Tables 4 and 5, Fig. 5).
In addition, ANCle,crit was highly sensitive to BCw percent
(Ple; Eq. 5), a factor that could be easily overlooked because
of its lack of strong biogeochemical meaning (Table 4). If
parameters like Ple can be defined in space (e.g., as a function
of soil type), then they should be explicitly considered in un-
certainty analysis and incorporated into the scaling of CAL.
For reasons not quite clear, BCu represents another example
of the complex nature of uncertainty behaviors in SMBE. BC
and N contents in stems were relatively important factors to
CAL estimates (Fig. 3), but growth rate and stem wood den-
sity were the primary factors to BCu and Nu (Table 4). Thus,
it is imperative to examine models as a whole and not simply
to infer model sensitivity from results obtained for the indi-
vidual components, even though the models under examina-
tion are as simple as SMBE.

Future research should focus on effective ways of reducing
uncertainty not only in SMBE, but also in the process of scal-
ing up SMBE for national assessments of CAL. To ensure an
acceptable level of uncertainty in model predictions is a major
criterion that defines the adequacy of models and scaling
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algorithms (Li and Wu, 2006). In addition to the data uncer-
tainty of natural variability in SMBE examined in this study,
new sources of spatial uncertainty will come into play in the
scaling up process, such as spatial heterogeneity of ecosystem
properties at large scales and data quality of spatial databases.
First, spatial uncertainty is manifested in categorical variables
because of spatial heterogeneity within grid cells or pixels
(Li and Wu, 2006). As a fundamental characteristic of ecolog-
ical systems at all scales, spatial heterogeneity exerts signifi-
cant influences on sampling, analysis, and modeling (Risser
et al., 1984; Wiens, 1989; Li and Reynolds, 1995; Turner
et al., 2001; Li and Wu, 2006). Spatial heterogeneity may be
well represented by maps from spatial databases that define
model input and parameters across the entire study area in
a spatially explicit fashion. However, the within-cell or sub-
pixel spatial heterogeneity is mostly ignored in most modeling
exercises. For example, the certain existence of heterogeneity
in soil texture in 1 km2 cell commonly used for scaling will
generate high uncertainty in BCw base rate or BCw class. In-
corporating subpixel spatial heterogeneity of soil or ecosystem
properties directly into scaling poses great difficulty. The asso-
ciated spatial uncertainty should be quantified with data from
intensively studied sites to assess its effects on the national as-
sessments of CAL. Second, spatial uncertainty can be caused
by poor data quality of model parameters defined by spatial
databases in terms of errors in sampling, interpolation, and da-
tabase management. Errors from these sources are bound to
propagate through the scaling process. The spatial uncertainty
from these error sources of spatial databases should be quan-
tified to identify potential ways of reducing such error in the
national assessments of CAL.

5. Conclusions

The results of this study strongly suggest that comprehen-
sive uncertainty analysis of models should be performed to de-
termine the most critical factors to sensitivity and uncertainty
of their predictions. Our approaches in this study were system-
atic and comprehensive in that all factors in SMBE were con-
sidered and their effects on both CAL and its key components
examined. The probability-based sampling was used to define
the simulation parameter space. Advanced techniques of
Monte Carlo simulation and uncertainty measures were ap-
plied to provide quantitative information about relative contri-
butions of the parameters to the total uncertainty in CAL
estimates. As a result, we were able to provide insights into
the complex behaviors of SMBE prediction of CAL. The re-
sults of this study have:

1. indicated moderate uncertainty of CAL as predicted
by SMBE with SD of 770 eq ha�1 yr�1 and CV of 40%
(Table 2);

2. demonstrated quantitatively the dominance by BCw and
ANCle,crit in SMBE (Table 3);

3. identified the six most critical parameters to CAL: BCw

base rate (thus, BCw class), BC:AL ratio, soil depth,
temperature, BC content in stems, and N content in stems
(Fig. 3, Table 5);

4. revealed the log-normal distribution of CAL with the prob-
abilistic sampling (Figs. 1 and 2); and

5. most importantly, illustrated effective ways of error parti-
tion and uncertainty quantification of CAL.

These findings should prove useful to any application of
SMBE to assess potential risks of air pollutants to ecosystems.
Scaling up SMBE for national assessments of CAL with ac-
ceptable uncertainty is a major challenge for future research
(Hodson and Langan, 1999; Barkman and Alveteg, 2001;
Hall et al., 2001; Skeffington, 2006). Uncertainty analysis
should play a critical role in ensuring that models provide
sound and reliable scientific information required to develop
effective policies for environmental protection.
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